复杂网络是描述和理解现实世界中复杂系统的有力工具. 近年来, 为了更准确地描述复杂网络中的交互关系, 或者从高阶视角分析成对交互作用网络, 许多学者开始使用高阶网络进行建模, 并在研究其动力学过程中发现了与成对交互作用网络不同的新现象. 然而, 与成对交互作用网络相比, 高阶网络的研究相对较少; 而且, 高阶网络结构相对复杂, 基于结构的统计指标定义较为分散且形式不统一, 这些都给描述高阶网络的拓扑结构特征带来了困难. 鉴于此, 本文综述了两种最常见的高阶网络——超图和单纯形网络——常用的统计指标及其物理意义. 本文有助于加深对高阶网络的理解, 促进对高阶网络结构特征的定量化研究, 也有助于研究者在此基础上开发更多适用于高阶网络的统计指标.
Supplementary notes can be added here, including code and math.